† Westinghouse tungsten-halogen quartz lamp, 120 V, 500 W, No. 500 Q/CL, run at 50 V.

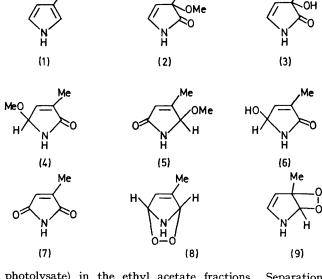
Journal of

The Chemical Society,

Chemical Communications

NUMBER 11/1972

The Photosensitised Oxygenation of 3-Methylpyrrole involving a Dioxetan Intermediate¹


By DAVID A. LIGHTNER* and LAWRENCE K. LOW (Department of Chemistry, University of California, Los Angeles, California 90024)

Summary The dye-sensitised photo-oxygenation of 3methylpyrrole in methanol gives 3-methyl-3-methoxy- Δ^4 pyrrolin-2-one and 3-hydroxy-3-methyl- Δ^4 -pyrrolin-2-one (which we assume arise via a dioxetan intermediate) as well as 3-methyl-5-methoxy- Δ^3 -pyrrolin-2-one, 4-methyl-5-methoxy- Δ^3 -pyrrolin-2-one, 5-hydroxy-3-methyl- Δ^3 pyrrolin-2-one, and citraconimide.

UNTIL very recently,^{2,3} the dye-sensitised photo-oxygenation of C-alkylated pyrroles had been largely uninvestigated. Except for the pioneering work of de Mayo and Reid⁴ in their structure determination of the photo-oxidation products from pyrrole itself and N-ethylpyrrole, other investigations of pyrrole photo-oxygenation were essentially confined to various phenyl-substituted pyrroles.⁵ Since virtually all known photo-oxidation products of pyrroles^{2,4} and alkylpyrroles^{2,3,6} appear to originate from endoperoxide intermediates resulting from 1,4-cycloaddition of singlet oxygen at the α -carbons, oxygenation at a β -carbon in 3-methylpyrrole is unusual. This type of reaction, leading to (2) and (3), as well as an apparent substituent effect on the methanolysis of endo-peroxide (8) yielding nonequal amounts of (4) and (5), has not heretofore been observed.

A dilute (1.7 mmol) methanolic solution of 3-methylpyrrole (1)⁷ containing 2.5 mg % of rose bengal (${}^{1}O_{2}$ sensitiser) was photolysed† in a water-cooled Pyrex immersion apparatus for 6 h while a slow stream of oxygen was bubbled through the reaction vessel. After evaporation of methanol *in vacuo*, the photolysate was chromatographed on silica gel and yielded six components (60 weight % of the total

photolysate) in the ethyl acetate fractions. Separation was achieved by preparative thin layer chromatography to yield (2)—(7) (yields 3, 6, 22, 7, 10, and 13% respectively).

Me

The structures were characterized by a combination of spectroscopic methods and [in the case of (7)] also by comparison of its m.p. with that of an authentic sample.

The reaction of (1) to form (2) and (3) constitutes the first example of photo-oxygenation at a pyrrole β -carbon unaccompanied by disruption of the pyrrole ring.⁶ The formation of both (2) and (3) might occur from a common dioxetan intermediate (9) arising from 1,2-cycloaddition of singlet oxygen⁸ to the enamine-like 2,3-bond of 3-methylpyrrole. We could find no analogous products involving C-4 of (1). We assume that products (4), (5), (6), or (7) are formed from endo-peroxide (8) after 1,4-addition of 102.9 We cannot as yet account for the unequal percentage yield

of the isomeric methoxylactams (4) and (5) which favours (4) by a factor of 3. So far we have observed hydroxylactam structures such as (6) only after photo-oxygenation of pyrroles with one α -alkyl substituent,^{1,3} but the direct formation of imides, e.g. (7), has been well established.^{2,3,6} The mechanistic details of these reactions are being studied.

We thank the National Science Foundation for support of this work. One of us (L.K.L.) acknowledges a Graduate Advancement Fellowship from the University of California. High resolution mass spectra were determined by Miss Elizabeth Irwin.

(Received, 24th March 1972; Com. 494.)

¹ For preceding paper on Pyrrole Photo-oxidation Studies, see D. A. Lightner and L. K. Low, J. Heterocyclic Chem., 1972, 9, 167.

² G. B. Quistad and D. A. Lightner, Chem. Comm., 1971, 1099. ³G. B. Quistad and D. A. Lightner, Tetrahedron Letters, 1971, 4417; L. K. Low and D. A. Lightner, Chem. Comm., 1972, 116.

4 P. de Mayo and S. T. Reid, Chem. and Ind., 1962, 1576.

⁵ (a) H. H. Wasserman and H. Liberles, J. Amer. Chem. Soc., 1960, 82, 2086; (b) H. H. Wasserman and A. H. Miller, Chem. Comm., 1969, 199; G. Rio, A. Ranjon, O. Pouchet, and M-J. Scholl, Bull. Soc. chim. France, 1969, 1667; R. W. Franck and J. Auerbach, J.

Org. Chem., 1971, 36, 61. ⁶ Cleavage of the 2-3 bond of 2,3,4,5-tetraphenylpyrrole has been reported in reference 5 (a). We have observed a similar reaction

K.-H. Schulte-Elte, Tetrahedron, 1969, 23, 2583.